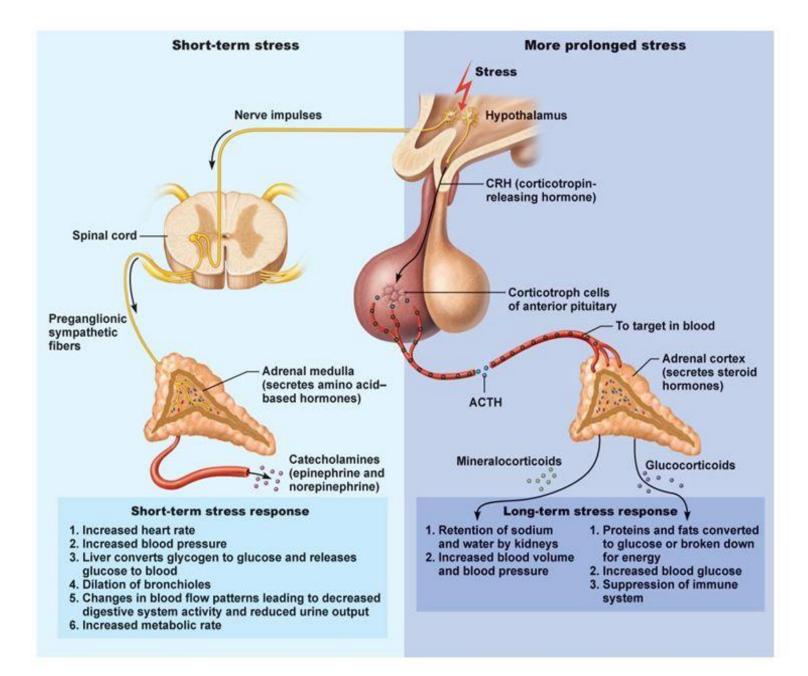


The role of steroid hormones and social neuropeptides in Female Adolescent Conduct Disorder

Christine M. Freitag, MD, PhD (Habilitation) – Coordinator FemNAT-CD Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy University Hospital Frankfurt, Goethe University


Neurobiology of Conduct disorder

Low arousal theory -> stress related systems

hormone	function	males with CD	females with CD
Cortisol (CORT)	 part of the HPA axis homeostatic regulation / adaptation environment stress regulation circadian system immune system cardiovascular system 	Basal CORT: reduced (Dorn et al. 2009) no differences (Northover et al. 2016) Reactive CORT: reduced (Fairchild et al. 2008, Northover et al. 2016)	Basal CORT: increased (Dorn et al. 2009) reduced (Pajer et al. 2001) no differences (Azar et al. 2004) Reactive CORT: No studies
Alpha Amylase (AA)	enzyme hydrolysis of polysaccharides indicator of adrenergic function (Ditzen et al., 2014)	basal AA: reduced (Angyal et al. 2016, Susman et al. 2010, de Vries-Bouw et al., 2006)	<u>basal AA:</u> no studies

Neurobiology of Conduct disorder

- Male sex hormones: aggressive behavior (Meta-Analysis Book et al. 2001)
- Female sex hormones: not studied

hormone	function	males with CD	females with CD
Testo- sterone (TEST)	steroid male sex hormone female / male differences in production and neuronal effects (Morford et al. 2016)	basal TEST: no differences (Constantino et al. 1993, van Goozen et al. 1998, Dorn et al. 2009) reactive TEST: no studies	basal TEST: no differences (Pajer et al. 2006) <u>reactive TEST</u> : no studies
Dehydro- epiandro- sterone (DHEA (-S))	steroid local production in brain (and adrenal gland / gonads) -> metabolites: testosterone & estrogen	basal DHEA (-S): increased (Dimitreiva et al., 2001, Golubchik et al. 2009, van Goozen et al. 1998)) no differences (Dimitreiva et al., 2001)	basal DHEA (-S): reduced (Pajer et al. 2006)

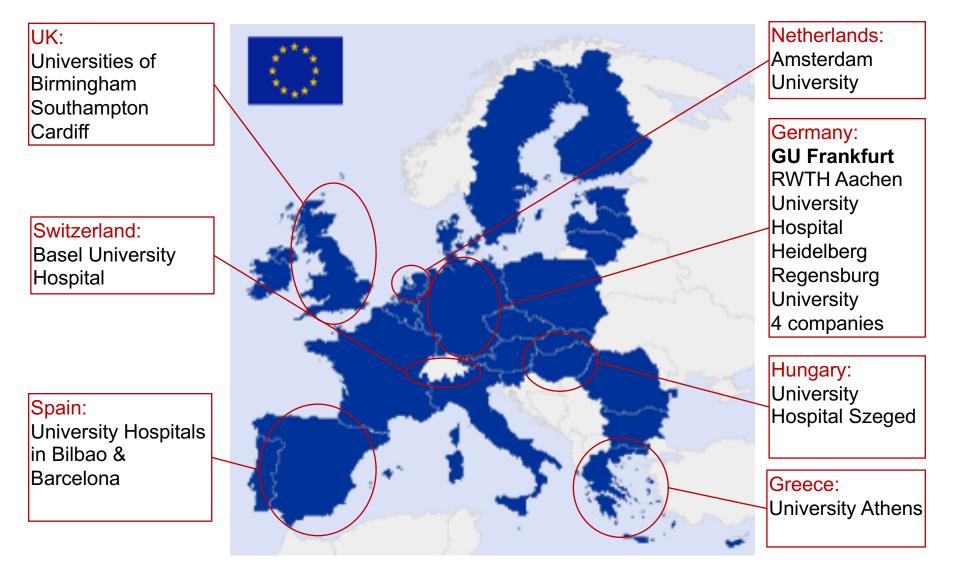
Animal models – aggressive behavior

Social neuropeptides (Haller et al. 2014)

hormone	function	males with CD	females with CD
Oxytocin (OXT)	 peptide hormone (Carter 2014) synthesized in PVN hypothalamus brain and somatic effects interaction with stress hormone system muscle contraction (uterus) 	basal OXT: reduced (high CD symptoms, high CU traits) (Levy et al. 2015)	<u>basal OXT:</u> no studies
Vaso- pressin (AVP)	 peptide hormone (Carter 2014) structurally similar to OXT water conservation monogamous behavior maternal aggression 	<u>basal AVP:</u> no studies	<u>basal AVP:</u> no studies

Neurobiology of Conduct disorder

- Contradictory findings
- Few studies on females
- Few studies on reactivity to social stress
- Lack of studies
 - female sex hormones
 - social neuropeptides
 - interaction despite functional correlation and interaction


Study I basal hormone measures - aims

- Sex specific association of basal cortisol, sex hormones, social neuropeptides, and alpha amylase on CD
- Sex specific interaction between basal cortisol, sex hormones, social neuropeptides, and alpha amylase on CD
- Hypothesis: Sex specific association with CD

"FemNAT-CD": 17 partners from 7 EU-countries

Coordinator: C.M. Freitag, GU Frankfurt am Main

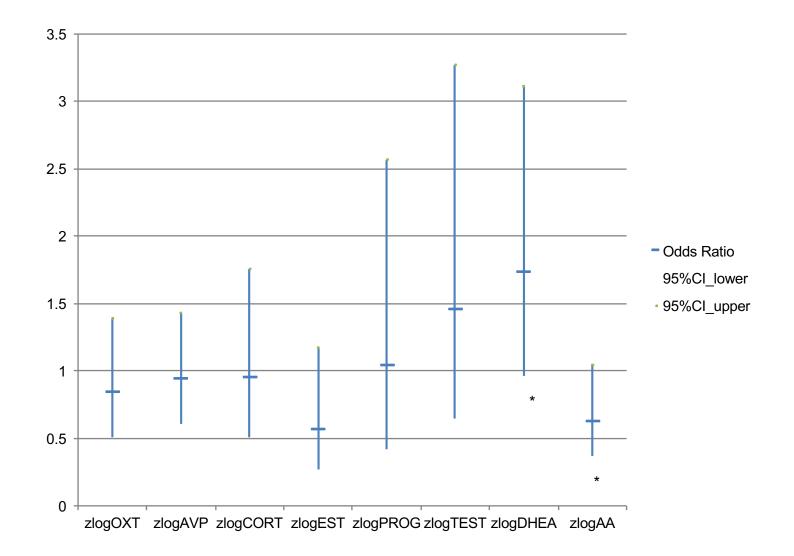
Sample basal hormone measures

	CD female N=111	CONT female N=117	CD male N=71	CONT male N=77	р
Age (mean, SD)	15.3 (2.1)	15.8 (1.9)	14.7 (2.5)	14.9 (2.1)	0.004
Parental education (mean, SD)	6.3 (2.8)	8.5 (3.0)	6.7 (2.6)	8.7 (2.5)	<.001
BMI (mean, SD)	22.6 (4.9)	21.9 (3.9)	20.4 (3.1)	20.7 (3.3)	<.001
Puberty status (N, %)	Early 2 (2) Mid 6 (5) Late 77 (69) Post 26 (23)	Early 2 (2) Mid 6 (5) Late 79 (67) Post 30 (26)	Early 18 (25) Mid 20 (28) Late 31 (44) Post 2 (3)	Early 19 (25) Mid 23 (30) Late 31 (40) Post 4 (5)	<.001
Smoking N (%)	68 (62)	14 (12)	38 (55)	8 (10)	<.001

Exclusion of females with contraceptive use.

Hormone measures, data analysis

- Salivettes -> OXT, AVP (Riagnosis, Germany)
- Cryotubes -> CORT, TEST, DHEA, EST, PROG, AA (daacro, Germany)
- obtained between 1-6 pm
- no eating, drinking, smoking or stress before sampling
- all hormones were log-transformed and z-standardised for data analysis
- Data analysis 1: logistic regression, CD as outcome
 - separately males and females
 - matched for puberty status, (time of) menstruation (girls only)
 - all hormones in model
 - adjustment for BMI, smoking, age, time of saliva sampling during day; site (random effect)



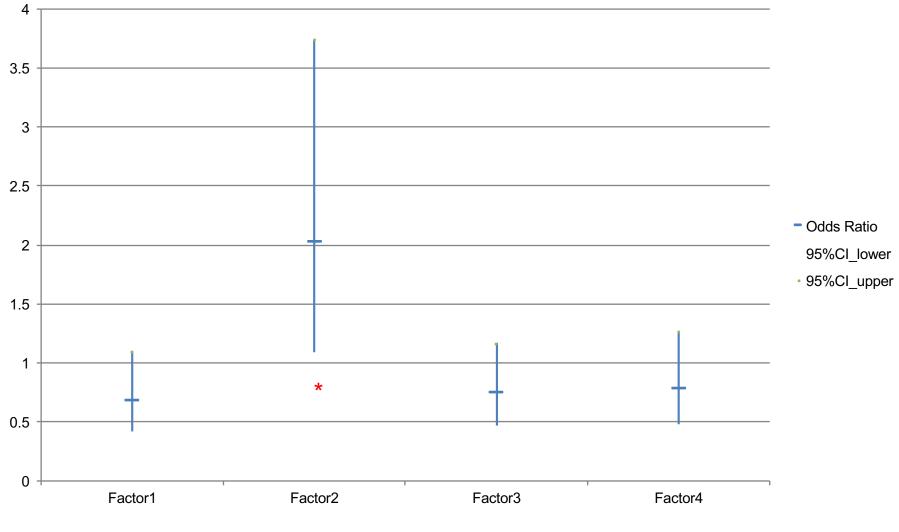
Male adolescents: predictors of CD

Female adolescents: predictors of CD

Data analysis 2

- Interaction of hormones
 - instable models for all 2 x 2 fixed effects (64 predictors)
 - Variable reduction by factor analysis
- Logistic regression: CD as outcome
 - factors and interaction of factors as predictors
 - separately males and females
 - matched for puberty status
 - adjustment for BMI, smoking, age, time of saliva sampling during day; site (random effect)

4 factors in males


4 factors in females

Rotated Factor Pattern Males			Rotated Factor Pattern Females						
	Factor1	Factor2	Factor3	Factor4		Factor1	Factor2	Factor3	Factor4
zlogPROG	<mark>0.88</mark>	0.16	-0.09	-0.10	zlogPROG	<mark>0.84</mark>	-0.15	0.09	-0.12
zlogEST	<mark>0.87</mark>	0.00	0.21	0.07	zlogTEST	<mark>0.80</mark>	0.21	0.15	0.11
					zlogEST	<mark>0.79</mark>	0.09	-0.13	-0.13
zlogDHEA	-0.11	<mark>0.88</mark>	0.09	0.13					
zlogTEST	0.33	<mark>0.82</mark>	0.12	-0.00	zlogAVP	-0.08	<mark>0.80</mark>	-0.10	-0.25
zlogCORT	0.48	<mark>0.51</mark>	-0.23	-0.35	zlogDHEA	0.26	<mark>0.71</mark>	0.16	0.31
zlogAA	-0.04	0.03	<mark>0.81</mark>	0.04	zlogAA	-0.11	-0.03	<mark>0.88</mark>	-0.13
zlogAVP	-0.09	-0.08	<mark>-0.66</mark>	0.12	zlogCORT	0.46	0.09	<mark>0.60</mark>	0.19
zlogOXT	-0.02	0.08	-0.12	<mark>0.94</mark>	zlogOXT	-0.12	-0.03	-0.05	<mark>0.89</mark>

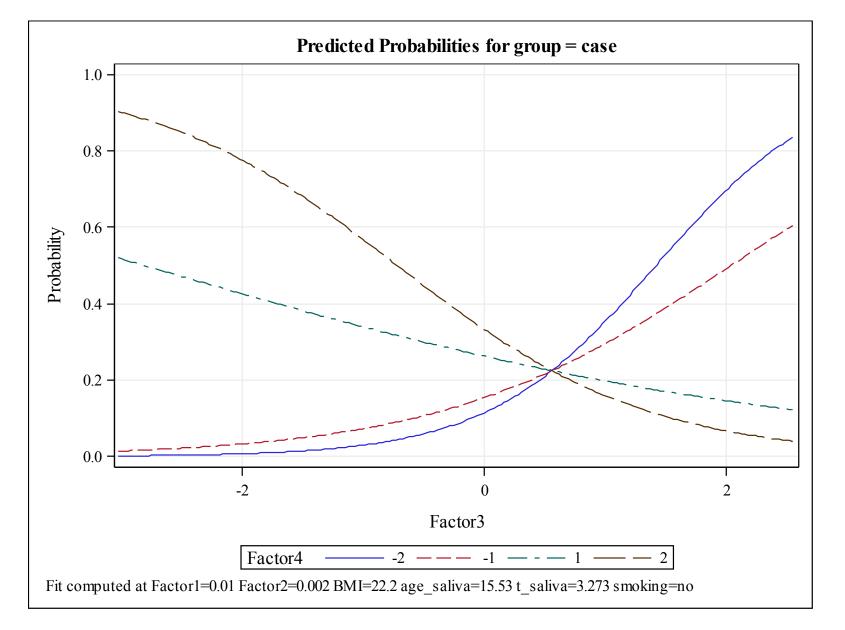
Male adolescents: predictors of CD

No factor x factor interaction

-> DHEA, TEST, CORT

Female adolescents: predictors of CD

Type III Tests of Fixed Effects						
	Num	Den				
Effect	DF	DF	F Value	Pr > F		
Factor1	1	188	2.03	0.1560		
Factor2	1	188	0.09	0.7695		
Factor3	1	188	1.40	0.2385		
Factor4	1	188	2.68	0.1031		
Factor1*Factor2	1	188	0.34	0.5610		
Factor1*Factor3	1	188	0.02	0.8795		
Factor1*Factor4	1	188	1.74	0.1891		
Factor2*Factor3	1	188	3.05	0.0824		
Factor2*Factor4	1	188	0.30	0.5833		
Factor3*Factor4	1	188	6.56	<mark>0.0112</mark>		
smoking	1	188	49.46	<.0001		
BMI	1	188	2.71	0.1012		
age_saliva	1	188	16.36	<.0001		
t_saliva	1	188	5.65	0.0185		


Interaction

Factor 3: AA / CORT

Factor 4: OXT

Factor 3: AA / CORT

Factor 4: OXT

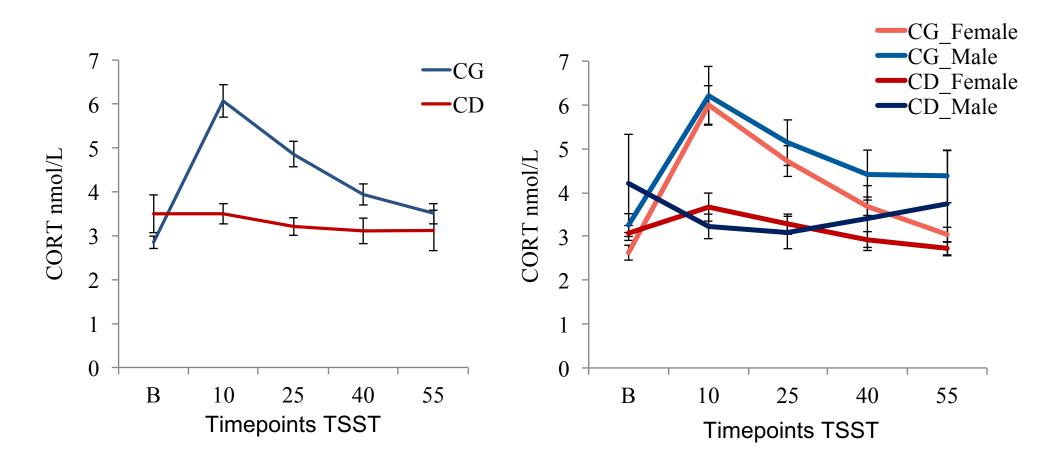
Discussion study I

- Difference in basal hormone pattern in males and females
- Female specific CD risk
 - Acute and long-term stress indicators
 - neuropeptides
 - interaction
 - Estradiol?
- Male specific CD risk
 - Male sex hormones
- Pending: exploratory study of risk factors

Study II - aims

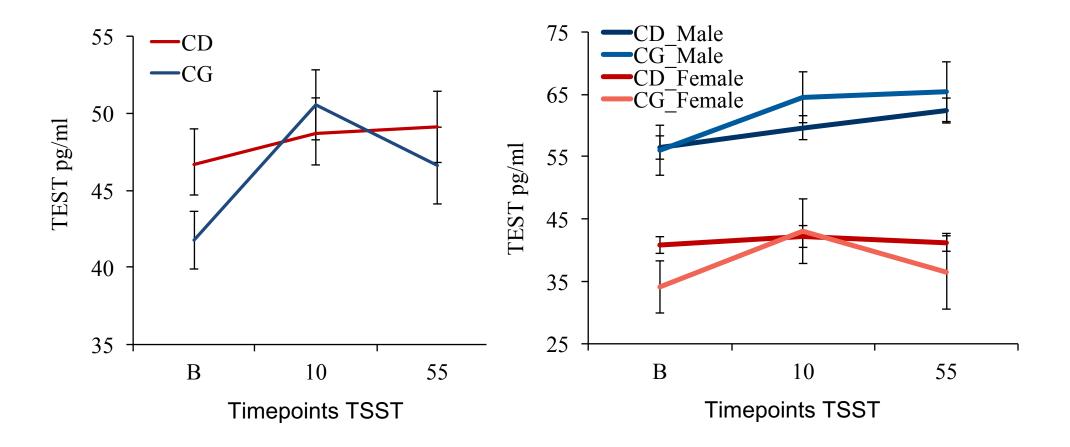
Trier Social Stress Test (Kirschbaum et al., 1993)

- Comparison of reactive CORT and TEST
- Hypothesis: Attenuated reactive CORT and TEST in CD


Study II sample

	CD	controls	p
N = 339	167	172	
♀ (N,%)	105 (63)	112 (65)	
3	62 (37)	60 (35)	
Age mean (SD)	14.6 (1.9)	14.6 (2.1)	.83
Pubertal Status N (%)	Early 15 (9) Mid 20 (12) Late 101 (63) Post 25 (16)	Early 16 (10) Mid 38 (23) Late 82 (49) Post 33 (20)	.04
BMI mean (SD)	22.32 (4.50)	20.87 (3.63)	<.01
smoking yes/no N (%)	97/68 (59/41)	19/153 (11/89)	<.001
any medication yes/no N(%)	46/111 (29/71)	4/165 (2/98)	<.001

CORT reactivity



- main effect of group (p<.01, d=.39)
- interaction effect of time*group (p<.001, d=.46)

TEST reactivity

- main effects of time (p<.001, d=.40) and gender (p<.001, d=.87)
- interaction effect of time*group (p<.01, d=.30)

Discussion study II

- CORT / TEST reactivity to social stress
 - Strongly attenuated in CD
 - Gender differences only for TEST
- Pending: exploratory study of risk factors
- Summary:
 - Strong role of stress and sex hormones in adolescent CD
 - May explain increase in CD prevalence in adolescents

FemNAT CD Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy GOETHE UNIVERSITY FRANKFURT

Thank you very much

- Anka Bernhard (data collection, organisation, statistics)
- Marietta Kirchner (statistical analysis)

